Full Bayesian inference with hazard mixture models

نویسندگان

  • Julyan Arbel
  • Antonio Lijoi
  • Bernardo Nipoti
چکیده

Bayesian nonparametric inferential procedures based on Markov chain Monte Carlo marginal methods typically yield point estimates in the form of posterior expectations. Though very useful and easy to implement in a variety of statistical problems, these methods may suffer from some limitations if used to estimate non-linear functionals of the posterior distribution. The main goal is to develop a novel methodology that extends a well-established marginal procedure designed for hazard mixture models, in order to draw approximate inference on survival functions that is not limited to the posterior mean but includes, as remarkable examples, credible intervals and median survival time. The proposed approach relies on a characterization of the posterior moments that, in turn, is used to approximate the posterior distribution by means of a technique based on Jacobi polynomials. The inferential performance of this methodology is analysed by means of an extensive study of simulated data and real data consisting of leukemia remission times. Although tailored to the survival analysis context, the proposed procedure can be adapted to a range of other models for which moments of the posterior distribution can be estimated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A One-Stage Two-Machine Replacement Strategy Based on the Bayesian Inference Method

In this research, we consider an application of the Bayesian Inferences in machine replacement problem. The application is concerned with the time to replace two machines producing a specific product; each machine doing a special operation on the product when there are manufacturing defects because of failures. A common practice for this kind of problem is to fit a single distribution to the co...

متن کامل

The Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models

In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Inference on Pr(X > Y ) Based on Record Values From the Power Hazard Rate Distribution

In this article, we consider the problem of estimating the stress-strength reliability $Pr (X > Y)$ based on upper record values when $X$ and $Y$ are two independent but not identically distributed random variables from the power hazard rate distribution with common scale parameter $k$. When the parameter $k$ is known, the maximum likelihood estimator (MLE), the approximate Bayes estimator and ...

متن کامل

Bayesian nonparametric inference on stochastic ordering

This article considers Bayesian inference on collections of unknown distributions subject to a partial stochastic ordering. To address problems in testing of equalities between groups and estimation of group-specific distributions, we propose classes of restricted dependent Dirichlet process (rDDP) priors. These rDDP priors have full support in the space of stochastically ordered distributions,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 93  شماره 

صفحات  -

تاریخ انتشار 2016